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Nonclassical Properties and Comparison of Two Squeezings*
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Abstract  The criteria for the existence of nonclassical effects of the signal and coupled modes are ob-
tained through the Fokker-Planck equation in the nondegenerate optical parametric oscillator (NOPO). For
the first time, the relation between the nonclassical depth and the intensity correlation and the comparison
between the two-mode squeezing (TMS) and the intensity difference squeezing (IDS) have been presented.
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1 Introduction

Since the HBT experiment'” there has been great interest in the field of nonclassical
states which can be understood only by quantum-mechanical description. The most well
studied manifestations in recent years are the photon antibunching and squeezing of
the light field. Generation of the nonclassical field, especially the squeezed states, by
the nondegenerate optical parametric oscillator (NOPO) has been an important subject
of theoretical and experimental studies. The NOPO can generate not only the two-
mode squeezing (TMS)? but also the intensity difference squeezing (IDS). J. Perina
and Haul” and other authors have discussed the process of the three-mode transient
interactions, but have not considered the damping of signal and idler modes in an optical
parametric oscillator cavity and have not analysed the relationship bewteen the photon
correlation and the nonclassical properties by means of the nonclassical criteria. To our
knowledge, up to now the nonclassical properties of the subharmonic and the coupled
modes in an intracavity three-mode interactions have not been comprehensively analysed
and the generation conditions and parameter dependences of two-mode squeezing (TMS)
and intensity difference squeezing (IDS) have not been discussed by comparison either.

We investigate the quantum statistics of the signal and coupled modes in
NOPO around the steady-state solution of the Fokker-Planck equation and here only
consider the adiabatical approximation of the pump mode. Based on the criteria for
the existence of nonclassical effects, the nonclassical photon statistics of the signal and
ccoupled modes has been studied and the inseparable relation between the nonclassical
properties of the two-mode radiation and the two-mode intensity correlation (photon
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correlation) has been demonstrated. From Mandel’s nonclassical criterion'®, we find
that although there are not any squeezings existing in each signal mode, there are some
antibunching effects when the pump field is strong enough. This is similar to the result
obtained in Ref. [4] for the transient process. Besides, by comparing the parameter
dependence of TMS with IDS we confirm that IDS is much larger than TMS on the
same conditions. In the meanwhile, optimal parameters for the two kinds of squeezings
have been obtained. These discussions not only involve the deep insight of the non-
classical properties of the light field, but also give a valuable theoretical reference for
the design of experimental systems.

2 Theoretical Model

We assume that the nondegenerate parametric oscillation will occur in a suitable
nonlinear medium inside an optical cavity tuned to allow the resonance of three modes
which are the injected driving field at frequency w, and two subharmonic fields with
the same frequencies (w,=w,=w) and orthogonal polarizations. The total Hamiltonian
of the system is

H=2hwadta,+hwala,+hod, a,+ihk/2 -(a,a] a; —aga,a,)
' 2
+ihe[atexp(—2iot)—a,exp (Riot) ]+ (a, [ —aiT)), 1)
i=0 ,

where a} and a, are the creation and annihilation operators for mode i (i=0,1,2), x
is the coupling constant, ¢ is proportional to the amplitude of the driving coherent
field and I, I’ * are the heat bath operators. Using the standard techniques and the
generalized P representation, we obtain the following Fokker-Planck equation!”:
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where @ =[u, o}, &, o, oy, o} ]. It is difficult to solve this equation straightforwardly.
Here we assume that the damping of the pump mode is much larger than the damp-
ings of the signal and idler modes, so that the pump mode can be adiabatically
eliminated and the mean numbers of thermal photons ni*=(e"*/*T—1)"'<< 1 at normal
to low temperatures. Thus Eq. (2) can be simp]jﬁed.as
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where )= (6= Ka,00)/ 70, o =(e— K @jof)/yy and & =[oy, o}, @y, @3],

As a further simplification, we assume y,=7y,. Let 5P/3t—0 in Eq. (2). We obtain
the steady-state solution of Eq. (3)®?.

P(x) =A-exp [y (T)], Q)

where

Y(T)=20af +2050,+ <2}:€02y1 - 1) In(x ala2—£)+<% - 1) In(x o} o —¢), 5)

A is the normalization factor which is determined by
[P(®) du (@) =1. ©
So
A=[Jexp[¢ (@) dp (@] ™

3 Statistics Properties of Light Field

+n _n

As we know, any normally ordered averages {a{™d|a}"a}) is

(ai"af a3z ay) = [ (af )" (o5 o,)" P (F) dp (3) = AL, ®)
where '

Lw= § (62" (a3 2,)" exp [ ()] d s (3) . ©)

The integral (9) can be evaluated by using tedious substitutes of variables (see
Appendix). The first several terms of results are as folows:
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where u=2¢/k, q=2yy,/k*—1, Ny=(¢/x Y ¢*(q! ), and similarly
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<a1>=<a2>=0,

(@) =<(a)*=0,
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2r(@+2)I'@+3) p=0 @+2),(q+3),

I,={a,a,>= u’? . (14)
3.1 The Nonclassical Depth of the Signal Mode

As pointed out in Ref. [10], for the signal mode there exists no squeezing on any
conditions, and the fluctuation of one of the quadratures of the signal mode is in gen-
eral the noise of the coherent state. But we shall point that the signal and idler
modes themselves are not the classical fields, they possess the nonclassical effect on
certain conditions.

For a single mode, the wellknown criterion for the existence of nonclassical effect
is!®
D®=(n?)~-{(n*) <0, (15)

where (n®> =<{a*a*aa). For the signal mode in our system we obtain
D = (Ipg I — 13) /Iy - (16)

Figure 1 shows the relation between the nonclassical depth D{Y of the signal mode
and the pump field for various thresholds. At first the values of D{* increases from
zero to the maximum and then decreases when the pump field increases and at about
double threshold, D{? is less than zero, and the stronger the pump field, the deeper the
nonclassical depth.

In fact, for a single mode, criterion (15) is identical with g{» (0)<1 because the
second-order correlation function of the signal mode is

<aTzaf> _ Iyly
<aTa1>2 11(% ' an

¢ 0=
and DP? <0, i.e. Iy ly<I,} means g® (0)<1. That is, the nonclassical effect of the

signal mode is the photon antibunching.

3.2 The Nonclassical Depth of the Two-Mode Radiation
A Simple generalized criterion for the existence of nonclassical effect in the two-
mode radiation was established by Ching Tsung Lee in 1990 as follows:

D = nP>+{nP>-2{nn,><0, (18)
and the smaller the D, the deeper the nonclassical depth.
We calculate the D,? f.r the coupled mode in our system and have
D=2~ 1)/ 10 - 19)

Figure 2 is D as a function of pump field at different thresholds. We see that D9
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is always less than zero. That is to say, the coupled mode formed from the signal
and idler modes is always the nonclassical field and the stronger the pump field or
the smaller the threshold, the deeper the nonclassical depth.
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Fig. 1. The nonclassical depth of the signal mode

as a function of pump field for x=1. 1, e'=5;
2, eth=10; 3, gh=20.

3.3 The Intensity Correlation

Fig. 2. The nonclassical depth of the two-mode
radiation as a function of pump field for x=1.
1, eth=5; 2, gh=10; 3, &"=20.

As discussed above, the nonclassical depth of the signal and idler modes are
much less than that of the coupled mode. Even when there is no nonclassical proper-
ties in the signal or idler modes, there still exists deep nonclassical depth for the
coupled mode. This results from the strong phoion correlation or intensity correlation
between the signal and idler photons which are generated and annihilated simultaneously.

The intensity correlation can be characterized as follows

C=2[Kaja,a;a,>—<a}a,»<a} a,>]

=2(1001n_1u§)/10(2)~ (20)

Figure 3 gives the relationship
between the intensity correlation and
the two-mode nonclassical depth. We
can see that the stronger the intensity
correlation is, the deeper the non-
classical depth is, and the linear de-
pendence between them will appear
when the intensity correlation is strong
enough. It shows that the quantum
correlation of the coupled mode results
in the nonclassical properties of the
two-mode radiation field.
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Fig. 3. The nonclassical depth of the two-mode radiation as

a function of intensity correlation for k=1. 1, e'h=5; 2, et
=10; 3, ¢"=20.
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4 The Comparison Between TMS and IDS

4.1 The Two-Mode Squeezing
The coupled mode is defined™” as

d=(a,+ay)/\/2 , d*=(at+a})/\J2 21
and its two quadrature components as

D,=1/2/2 . (a+a,+a; +a;) ,
D_=1/2/2i. (a,+a,—al—a]) . (22)

Then the fluctuations of the two components are

C(AD> =1/4+ L0 +1))/21y .
((AD_)2>=1/4+(110—112)/2100 . (23)

If the fluctuations are less than 1/4, the coupled mode is squeezed and the

squeezing degree is
S, =[1/4=<AD_)>]/(1/4) . _ 24

4.2 The Intensity Difference Squeezing -
Consider the fluctuation of the intensity difference of the signal and idler modes

(I, - L)
<A2(11”12)>=<(11_12)2>"<11_12>2 =2(Iy+ 1= 11) /1, (25)
where I, and I, are the intensities of the signal and idler modes, respeétively. Accord-

ing to Ref. [13], the noise of the “mixed” field of the signal and idler modes {4’
(I;+1,)> is the shot noise, i.e. the standard quantum limit:

AL+ L)y =<, +Ly) =<1, ~*'12>2=2(120 +1 +110)/100_4(110/100)2- (26)
100 . . .
So the intensity difference squeezing
%0 ; degree is
- S =K+ 1)
E 6ot S 2
“ 1 — AL = L)/KA L+ 1)y, (27)

Figure 4 gives the comparison of
these two squeezings. Both squeezings
increase and reach the maxima when
the pump field increases from zero
to a little above the threshold, and

€ then decrease gradually. Comparing
Fig. 4. The comparison of the two-mode squeezing S, and 1. 17 2.2 and 3. 3. we find that

the intensity difference squeezing S; as the functions of pump . .
field for k=1 and 1, 1’, ¢h=5; 2, 2’, eth=10; 3, 3, eth="20. both squeezings reach the maxima
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under nearly the same conditions. When thee approaches zero, S;=66.7%, which means
that the IDS always exists and has a large squeezing provided that the pump field
exists. At e¢=0, that is, {A2(i+1)) =<A*(I,+1,)> =0, the IDS is meaningless. But
when ¢ approaches 0, the TMS approaches zero. The IDS is much larger than the
TMS on the same conditions, and the former changes slower than the latter and this
is more obvious below the threshold. For example, when ¢"=35, the maxima of S,
and S, are about 75% and 42%, respectively. When & decreases to 2.5, Sy, and
Spmax decrease to 70% and 30%, respectively. '

From Figs. 5— 7, we give respectively the IDS and TMS as the functions of
parameters 7y, y, and k. Obviously, there is an optimal parameter value corresponding
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Fig. 5. The two-mode squeezing and the intensity difference
squeezing as the functions of the damping of the pump mode
for k=2, e=5and y,=1.
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Fig. 6. The two-mode squeezing and the intensity differ-
ence squeezing as the functions of the damping of the

71

signal mode for k=2, ¢=5 and yy=1.

Fig. 7. The two-mode squeezing and the inwnsit-y. dif-
ference squeezing as the functions of the coupling

coefficient for =5, yp=100 and y,=0.5,
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to the maximum squeezing in each case. For example, for ¢=5, y,=1, k=2, the
optimal values of y, are 35.5 and 39.0, corresponding to the maximum squeezings of
TMS and IDS, respectively. i

Having an insight into the physical implication, the IDS only involves the
fluctuation of the intensity and it is independent of phase. In the parametric down
conversion, pairs of signal and idler photons are created and annihilate simultaneously;
therefore, counting the photons emitted in the signal and idler modes during a time
much longer than (1/2 y,) should give exactly equal numbers. On the ideal conditions
(no cavity damping and the quantum efficient is 1), the perfect quantum noise
suppression for IDS can be obtained®, and this IDS is not strongly dependent on the
pump power, the coupling constant and the quality factor of the cavity. But the TMS

is strongly dependent on the phase and the other cavity parameters® '2.

5 Conclusions

We have discussed the nonclassical effect of the signal and coupled modes in
NOPO by the solution of the Fokker-Planck equation for generalized P representation
of the signal and idler modes and obtained the criteria for the existence of non-
classical effects of the signal and coupled modes. For the signal mode the nonclassical
effect of photon antibunching appears when the pump field is strong enough (larger
than double threshold). For the coupled mode formed by the signal and idler modes,
the nonclassical effect resulting from the intensity correlation of the twin beams always
exists and the nonclassical depth increases as the intensity of pump field is increased.

The comparison between the TMS and IDS shows that the IDS is much larger
than the TMS under the same conditions and so it is easier to obtain IDS than TMS;
in other words, it is more difficult to obtain the TMS with large squeezing. This is
consistent with the experimental results up to now™ *. On the other hand, there are
some inherent correlations between the two kinds of squeezing. From Figs. 4—7, we
see that the conditions for achieving the maximum squeezings are almost the same.
This indicates that we may design an experiment to generate both of the squeezings.

Appendix
To calculate integrals of (9):
Inn= [ (a9,)" (a3 )" exp [ (F) 1du (%), - AD
substituting

t=a, v=a,,
x=(x/e)oa, ° ' (A2)

y={(x/e)oyo;
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into (Al), we find

= ()W( ) ot brexplury +uyg|f . (AY

where u=2¢/k, q=27y,7,/x*—1 and dxX=dxdydtdv.
Take the further substitutions ‘ ‘
z=(x/e)tv, w=tfv (A4)
and consider the integral in z; then (A3) becomes
L= (e 1) ¥ 282 fwm ™" x™ y" (1= x) (1 =y)? exp [uwx+ (u/w)y] dxdydw. ~ (A5)
Using formulall

(F(b—a)I(a)]/ )M [a,b;c]= [t* ' (1—1r)> " 'edt, * (A6)

where I'(a) is the I Function and M(a,b;c) is the Kummer function
L@ 2 @

M(a,b;c)= 1+ (b)z TR (b) — ; (A7)

@,=1, (@)n=a(a+1)(a+2) - (@a+n—1); (A8)

and considering the integrals in x and y for (AS), we obtain

A = i mn r(m+1)r(n+1) m—n—1 +q+2:
I, N0<K) CEY TS EYES) [w M[m+1,m+q+2;uw]

“M[n+1,n+q+2; u/wldw, (A9)
where N,=(¢/k)’e*(q!)> |
As an example, we calculate I,,. From Eq. (A9) we have
Io=N,/[I(g+2)P fw ' M[1,q+2;uw] - M[1,q+2 u/w]dw. (A10).
Recalling the definition of Kummer function of (A7), we obtain '
M1, g +2; uw]=1+uw/(q +2)+u2W2/[(q +2) @+ +uw’/[@+2)@+3) g+ +,
M1, q+2; u/W]=1+u/W(q‘+2)]+u2/[W2(q +2) (g +3)]+u/[wg+2)(g+3) (g +4)]+

Thus we can readily obtain the coefficient of w™' for the series integrand w™'M (1,
q+2;uw] - M[1,9+2; u/w] in (A10):

+lu/q +2)]2+[u2/(q+2)(q )P+ (g +2) (g +3) (g +4F +

; g+ 2),,]2

Using the residue theorem, taking a closed integration contour around w=0, we obtain

u??, (Al
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_ N, & 1
o= TRg+27 ,,;o [(@+2),]

That is the result of (10). Other moments of I,, may be calculated similarly.

uPe, (A12)
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